Magnetorheological (MR) materials are a group of smart materials used in new technologies with controlled reliability. The development of these materials is expanding, starting from MR fluids, elastomers, grease, and gel. This large number of material types further expands the various applications of MR materials as a creative technology to support performance enhancement. For example, MR fluid is used to improve the performance of shock absorbers such as vehicle suspension, the damping of building structures, and polishing of the workpiece. MR elastomers are used for engine mounting, insulation base, and many other applications with intelligent material properties such as stiffness controllability. However, there are still complexities in the practical implementation of the control system beyond reliability. Many previous studies have focused on the performance improvement and reliability of MR materials as smart materials for application devices and systems. In this review article, the specific discussion related to vibration control strategies in MR material-based systems was thoroughly investigated. To discuss this point, many MR applications including transportation system and vibration isolation were adopted using different types of control strategies. Many different control strategies that have been used for MR applications such as fuzzy logic control, optimal control, and skyhook control are discussed in-depth in terms of the inherent control characteristics of merits and demerits.