2018
DOI: 10.11591/eecsi.v5.1666
|View full text |Cite
|
Sign up to set email alerts
|

Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor

Abstract: This study aims to design a control scheme that is capable to improve performance and efficiency of brushless DC motor (BLDC) in operating condition. The control scheme is composed of sliding mode controller (SMC) with proportionalintegral-derivative (PID) sliding surface. The PID sliding surface is used to improve the system transient response. Then, the SMC-PID is optimized by genetic algorithm optimization for further improvement on the stability and robustness against nonlinearities and disturbances. Chatt… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 10 publications
0
1
0
1
Order By: Relevance
“…Secara teoritis, torsi puncak terjadi ketika medan magnet stator dan rotor berada pada saat 90°. Kumparan harus diberi sumber tenaga agar motor tetap berjalan sehubungan dengan rangkaian tertentu dengan mempertimbangkan informasi posisi dan ini disebut sebagai komutasi (Putra, Has, & Effendy, 2018).…”
Section: Pemodelan Motor Bldcunclassified
“…Secara teoritis, torsi puncak terjadi ketika medan magnet stator dan rotor berada pada saat 90°. Kumparan harus diberi sumber tenaga agar motor tetap berjalan sehubungan dengan rangkaian tertentu dengan mempertimbangkan informasi posisi dan ini disebut sebagai komutasi (Putra, Has, & Effendy, 2018).…”
Section: Pemodelan Motor Bldcunclassified
“…Conventional control methods cannot resist these alterations and lose their precision. Thus, it was necessary to implement advanced control techniques to solve this problem, especially those based on the artificial intelligence, such as: fuzzy control [32,33], neural control [34,35], Genetic Algorithm (GA) control [36,37], PSO control [38], BAT control [31] and recently, FA control and Improved Firefly Algorithm (IFA) or Modified Firefly Algorithm (MFA) [24][25][26][27][28]. These methods are based essentially on the optimization of the PID corrector parameters and its derivatives to obtain optimal performance.…”
Section: Introductionmentioning
confidence: 99%