Aerocapture is one of the essential technologies for future large-scale space exploration missions, as it can significantly reduce the Δv and fuel requirement. The performance and robustness of two different aerocapture control methods are analyzed around Mars exploration, and then an analytic predictor-corrector guidance algorithm for drag modulation flight control system is proposed. A piecewise linear function between velocity and flight path angle is established by appropriate approximations and assumptions, and then the state at atmosphere interface can be predicted by an analytical method; therefore, aerocapture guidance can be realized by feedback control. Numerical simulation is used to evaluate performance and robustness of the algorithm. The simulation results show that the guidance algorithm is accurate and robust, which can effectively overcome the influence of atmospheric density error, aerodynamic parameter error, and initial state uncertainty.