2014
DOI: 10.1115/1.4028470
|View full text |Cite
|
Sign up to set email alerts
|

Robust and Dynamically Consistent Model Order Reduction for Nonlinear Dynamic Systems

Abstract: There is a great importance for faithful reduced order models (ROMs) that are valid over a range of system parameters and initial conditions. In this paper, we demonstrate through two nonlinear dynamic models (pinned-pinned beam and thin plate) that are both randomly and periodically forced that smooth orthogonal decomposition (SOD)-based ROMs are valid over a wide operating range of system parameters and initial conditions when compared to proper orthogonal decomposition (POD)-based ROMs. Two new concepts of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2016
2016
2023
2023

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 20 publications
0
2
0
Order By: Relevance
“…2.5 Subspace Robustness. The key idea behind subspace robustness is a quantitative metric that determines whether the subspace will be insensitive to perturbations of the system parameters and initial conditions [30]. If a subspace is insensitive to these perturbations (e.g., off-design configurations), the subspace will provide a faithful ROM of the system of interest.…”
Section: Extended State Proper Orthogonal Decompositionmentioning
confidence: 99%
See 1 more Smart Citation
“…2.5 Subspace Robustness. The key idea behind subspace robustness is a quantitative metric that determines whether the subspace will be insensitive to perturbations of the system parameters and initial conditions [30]. If a subspace is insensitive to these perturbations (e.g., off-design configurations), the subspace will provide a faithful ROM of the system of interest.…”
Section: Extended State Proper Orthogonal Decompositionmentioning
confidence: 99%
“…In Ref. [30], the concept of subspace robustness was presented which determines whether the subspace used for an ROM will be insensitive to perturbations of the system parameters and initial conditions. This concept was further used in Refs.…”
Section: Introductionmentioning
confidence: 99%