2022
DOI: 10.48550/arxiv.2204.05028
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Robust and Efficient Parameter Estimation for Discretely Observed Stochastic Processes

Abstract: In various practical situations, we encounter data from stochastic processes which can be efficiently modelled by an appropriate parametric model for subsequent statistical analyses. Unfortunately, the most common estimation and inference methods based on the maximum likelihood (ML) principle are susceptible to minor deviations from assumed model or data contamination due to their well known lack of robustness. Since the alternative non-parametric procedures often lose significant efficiency, in this paper, we… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?