Genome-wide association studies (GWAS) serve as a crucial tool for identifying genetic factors associated with specific traits. However, ethical constraints prevent the direct exchange of genetic information, prompting the need for privacy preservation solutions. To address these issues, earlier works are based on cryptographic mechanisms such as homomorphic encryption, secure multi-party computing, and differential privacy. Very recently, federated learning has emerged as a promising solution for enabling secure and collaborative GWAS computations. This work provides an extensive overview of existing methods for GWAS privacy preserving, with the main focus on collaborative and distributed approaches. This survey provides a comprehensive analysis of the challenges faced by existing methods, their limitations, and insights into designing efficient solutions.