We propose a robust 2D shape reconstruction and simplification algorithm which takes as input a defect‐laden point set with noise and outliers. We introduce an optimal‐transport driven approach where the input point set, considered as a sum of Dirac measures, is approximated by a simplicial complex considered as a sum of uniform measures on 0‐ and 1‐simplices. A fine‐to‐coarse scheme is devised to construct the resulting simplicial complex through greedy decimation of a Delaunay triangulation of the input point set. Our method performs well on a variety of examples ranging from line drawings to grayscale images, with or without noise, features, and boundaries.