Mass spectrometry imaging (MSI) provides the opportunity to investigate tumor biology from an entirely novel biochemical perspective and could lead to the identification of a new pool of cancer biomarkers. Effective clinical translation of histology-driven MSI in systems oncology requires precise colocalization of morphological and biochemical features as well as advanced methods for data treatment and interrogation. Currently proposed MSI workflows are subject to several limitations, including nonoptimized raw data preprocessing, imprecise image coregistration, and limited pattern recognition capabilities. Here we outline a comprehensive strategy for histology-driven MSI, using desorption electrospray ionization that covers (i) optimized data preprocessing for improved information recovery; (ii ) precise image coregistration; and (iii) efficient extraction of tissue-specific molecular ion signatures for enhanced biochemical distinction of different tissue types. The proposed workflow has been used to investigate region-specific lipid signatures in colorectal cancer tissue. Unique lipid patterns were observed using this approach according to tissue type, and a tissue recognition system using multivariate molecular ion patterns allowed highly accurate (>98%) identification of pixels according to morphology (cancer, healthy mucosa, smooth muscle, and microvasculature). This strategy offers unique insights into tumor microenvironmental biochemistry and should facilitate compilation of a large-scale tissue morphology-specific MSI spectral database with which to pursue next-generation, fully automated histological approaches. M ass spectrometry imaging (MSI) of biological tissue sections can provide topographically localized biochemical information to supplement conventional histopathological classification systems (1-3). Together with emerging metabolomicsbased profiling approaches, MSI represents a highly promising approach in molecular systems oncology (4, 5) and is increasingly being used for the discovery of next-generation cancer biomarker panels (6, 7). Among the MSI techniques currently available, the three most commonly used are matrix-assisted laser desorption ionization (MALDI) (2, 6), secondary ion mass spectrometry (SIMS) (8, 9), and desorption electrospray ionization (DESI) (10, 11). With each of these described approaches, operating characteristics and experimental parameters can be modulated to suit specific analytical objectives and can be customized for the identification of particular biomolecular species. Here, we have opted to use the DESI technique as there are several practical advantages with this method for metabolome-wide imaging studies, primarily attributable to lack of requirement for matrix deposition and ambient ionization, which requires minimal sample preparation (11,12).Currently MSI is likely to exert greatest influence at the prognostic and therapeutic stages of the disease continuum (Fig. 1), with three fundamental areas of application in cancer phenotyping. First, it offers a mea...