This papter introduces a decentralized multivariable robust adaptive voltage and frequency regulator to ensure the stability of large-scale interconnnected generators. Interconnection parameters (i.e. load, line and transormer parameters) are assumed to be unknown. The proposed design approach requires the reformulation of conventiaonal power system models into a multivariable model with generator terminal voltages as state variables, and excitation and turbine valve inputs as control signals. This model, while suitable for the application of modern control methods, introduces problems with regards to current design techniques for large-scale systems. Interconnection terms, which are treated as perturbations, do not meet the common matching condition assumption. A new adaptive method for a certain class of large-scale systems is therefore introduces that does not require the matching condition. The proposed controller consists of nonlinear inputs that cancel some nonlinearities of the model. Auxiliary controls with linear and nonlinear components are used to stabilize the system. They compensate unknown parametes of the model by updating both the nonlinear component gains and excitation parameters. The adaptation algorithms involve the sigmamodification approach for auxiliary control gains, and the projection approach for excitation parameters to prevent estimation drift. The computation of the matrix-gain of the controller linear component requires the resolution of an algebraic Riccati equation and helps to solve the perturbation-mismatching problem. A realistic power system is used to assess the proposed controller performance. The results show that both stability and transient performance are considerably improved following a severe contingency.