In model-based system engineering (MBSE), reuse of existing models in the development of a new system can be advantageous. Automatic assignment of existing models to each design task within a design task set has been proven to be feasible. However, while several studies have discussed the significance of models in MBSE and methodologies for models reuse, solving the model reusability problem through a model assignment method has not been discussed. Additionally, a significant challenge in model assignment is to address the conflict between the maximization of the model value summations, which are yielded by assigning the models to a design task set, and the minimization of the execution cycle of the task set. This study (a) proposes a design-task-oriented model assignment method that establishes a multiobjective model, based on a model assignment integration framework, and (b) designs a differential-evolution-combined adaptive nondominated sorting genetic algorithm-II to provide an optimal tradeoff between maximizing the total model values and minimizing the execution cycle of the task set. By comparing the performance of the algorithm in resolving the assignment of models to a design task set with those of two conventional algorithms in a phased-array radar development project, the algorithm’s performance and promotion of system development are verified to be superior. The new method can be applied for developing model scheduling software for MBSE-compliant product development projects to improve using effects of the models and development cycle.