Abstract-Ensemble clustering, also known as consensus clustering, aims to generate a stable and robust clustering through the consolidation of multiple base clusterings. In recent years many ensemble clustering methods have been proposed, most of which treat each clustering and each object as equally important. Some approaches make use of weights associated with clusters, or with clusterings, when assembling the different base clusterings. Boosting algorithms developed for classification have also led to the idea of considering weighted objects during the clustering process. However, not much effort has been put towards incorporating weighted objects into the consensus process.To fill this gap, in this paper we propose an approach called Weighted-Object Ensemble Clustering (WOEC). We first estimate how difficult it is to cluster an object by constructing the coassociation matrix that summarizes the base clustering results, and we then embed the corresponding information as weights associated to objects. We propose three different consensus techniques to leverage the weighted objects. All three reduce the ensemble clustering problem to a graph partitioning one. We present extensive experimental results which demonstrate that our WOEC approach outperforms state-of-the-art consensus clustering methods and is robust to parameter settings.