To address the issue of a large calculation and difficult optimization for the traditional fault detection of a wind turbine-based pitch control system, a fault detection model, based on LightGBM by the improved Harris Hawks optimization algorithm (light gradient boosting machine by the improved Harris Hawks optimization,IHHO-LightGBM) for the wind turbine-based pitch control system, is proposed in this article. Firstly, a trigonometric function model is introduced by IHHO to update the prey escape energy, to balance the global exploration ability and local development ability of the algorithm. In this model, the fault detection false alarm rate is used as the fitness function, and the two parameters are used as the optimization objects of the improved Harris Hawks optimization algorithm, to optimize the parameters, so as to achieve the global optimal parameters to improve the performance of the fault detection model. Three different fault data of the pitch control system in actual operations of domestic wind farms are used as the experimental data, the Pearson correlation analysis method is introduced, and the wind turbine power output is taken as the main state parameter, to analyze the correlation degree of all the characteristic variables of the data and screen the important characteristic variables out, so as to achieve the effective dimensionality reduction process of the data, by using the feature selection method. Three established fault detection models are selected and compared with the proposed method, to verify its feasibility. The experimental data indicate that compared with other algorithms, the fault detecting ability of the proposed model is improved in all aspects, and the false alarm rate and false negative rate are lower.