This paper considers an augmented double autoregressive (DAR) model, which allows null volatility coefficients to circumvent the over-parameterization problem in the DAR model. Since the volatility coefficients might be on the boundary, the statistical inference methods based on the Gaussian quasi-maximum likelihood estimation (GQMLE) become non-standard, and their asymptotics require the data to have a finite sixth moment, which narrows applicable scope in studying heavy-tailed data. To overcome this deficiency, this paper develops a systematic statistical inference procedure based on the self-weighted GQMLE for the augmented DAR model. Except for the Lagrange multiplier test statistic, the Wald, quasi-likelihood ratio and portmanteau test statistics are all shown to have non-standard asymptotics. The entire procedure is valid as long as the data is stationary, and its usefulness is illustrated by simulation studies and one real example.where u, φ i ∈ R, ω > 0, α i > 0, {η t } is a sequence of independent and identically distributed (i.i.d.) random variables with zero mean and unit variance, and η t is independent of {y s ; s < t}. Model (1.1) was first termed by Ling (2004), and it is a subclass of ARMA-ARCH models in Weiss (1984) and of nonlinear AR models in Cline and Pu (2004), but it is different from Engle's ARCH model if some φ i = 0.