Objective When planning a clinical study, evidence on the treatment effect is often available from previous studies. However, this evidence is mostly ignored for the analysis of the new study. This is unfortunate, since using it could lead to a smaller study without compromising power. We describe a design that addresses this issue. Methods We use a Bayesian meta-analytic model to incorporate the available evidence in the analysis of the new study. The shrinkage estimate for the new study integrates the evidence from the other studies. At the planning phase of the study, it allows a statistically justified reduction of the sample size. Results The design is illustrated using data from an Food and Drug Administration (FDA) review of lurasidone for the treatment of schizophrenia. Three studies inform the meta-analysis before the new study is conducted. Results from an additional phase III study, which were not available at the time of the FDA review, are then used for the actual analysis. Conclusions In the presence of reliable and relevant evidence, the design offers a way to conduct a smaller study without compromising power. It therefore fills a gap between the assessment of evidence and its actual use in the design and analysis of studies.
INTRODUCTIONClinical trials are a cornerstone of evidence-based medicine. The impressive number of more than 220 000 registered trials in the electronic database http://www.clinicaltrials.gov supports this statement, and further growth at an accelerated rate is likely. While this number shows the importance of clinical research, it also reveals that typically more than one clinical study investigating the same treatment (or interventions) is conducted. When designing a clinical study, it is therefore good practice to review the literature 1 and assess the body of evidence. This will provide information on the previous experience in the field and relevant topics such as commonly used end points, challenges with missing data and expected patient enrolment. It may also undermine the need for a new study.1 2 The latter is specifically important since resources to fund studies are limited and competition is high, whether in academia or industry. While all of the preceding reasons justify the need to conduct a systematic review before starting a new study, this is even more critical for statistical reasons. Defining end points, analysis sets, primary and secondary analyses and, most importantly, the sample size calculation critically depends on realistic and reliable assumptions. However, for all of these tasks, the information (data) from the review is used only indirectly in the new study. For example, an estimated treatment effect from a meta-analysis can serve as the base for the sample size calculation, yet it will not contribute to the actual analysis of the study. This is unfortunate, since it means that in the actual analysis, we ignore what we know already. Using the information in the analysis, too, could lead to a smaller study or to higher power. The question t...