In this article, we focus on adaptive linear regression methods and propose a new technique. The article begins with a review of the online passive aggressive algorithm (OPAA), an adaptive linear regression algorithm from the machine learning literature. We highlight the strengths and weaknesses of OPAA and compare it with other popular adaptive regression techniques such as moving window and recursive least squares, recursive partial least squares, and justin-time or locally weighted regression. Modifications to OPAA are proposed to make it more robust and better suited for industrial soft-sensor applications. The new algorithm is called smoothed passive aggressive algorithm (SPAA), and like OPAA, it follows a cautious parameter update strategy but is more robust. The trade-off between SPAA's computation complexity and accuracy can be easily controlled by manipulating just two tuning parameters. We also demonstrate that the SPAA framework is quite flexible and a number of variants are easily formulated. Application of SPAA to estimate the time-varying parameters of a numerically simulated autoregressive with exogenous terms (ARX) model and to predict the Reid vapor pressure of the bottoms flow from an industrial column demonstrates its superior performance over OPAA and comparable performance with the other popular algorithms.