We present a scalable logo recognition technique based on feature bundling. Individual local features are aggregated with features from their spatial neighborhood into bundles. These bundles carry more information about the image content than single visual words. The recognition of logos in novel images is then performed by querying a database of reference images. We further propose a novel WGC-constrained ransac and a technique that boosts recall for object retrieval by synthesizing images from original query or reference images. We demonstrate the benefits of these techniques for both small object retrieval and logo recognition. Our logo recognition system clearly outperforms the current state-of-the-art with a recall of 83% at a precision of 99%.