Multicomponent reactions (MCRs), which are located between one- and two-component and polymerization reactions, provide a number of valuable conceptual and synthetic advantages over stepwise sequential approaches towards complex and valuable molecules. To address current limitations in the number of MCRs and the resulting scaffolds, the concept of union of MCRs was introduced two decades ago by Dömling and Ugi and is rapidly advancing, as is apparent by several recently published works. MCR technology is now widely recognized for its impact on drug discovery projects and is strongly endorsed by industry in addition to academia. Clearly, novel scaffolds accessible in few steps including MCRs will further enhance the field of applications. Additionally, broad expansion of MCR applications in fields such as imaging, materials science, medical devices, agriculture, or futuristic applications in stem cell therapy and theragnostics or solar energy and superconductivity are predicted.