2021
DOI: 10.3390/s21165290
|View full text |Cite
|
Sign up to set email alerts
|

Robust Heartbeat Classification for Wearable Single-Lead ECG via Extreme Gradient Boosting

Abstract: Wearable electrocardiogram (ECG) monitoring devices have enabled everyday ECG collection in our daily lives. However, the condition of ECG signal acquisition using wearable devices varies and wearable ECG signals could be interfered with by severe noises, resulting in great challenges of computer-aided automated ECG analysis, especially for single-lead ECG signals without spare channels as references. There remains room for improvement of the beat-level single-lead ECG diagnosis regarding accuracy and efficien… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 31 publications
0
2
0
2
Order By: Relevance
“…Las ANN típicas están compuestas por tres tipos de capas: entrada, salida y ocultas. Cada capa está constituida por neuronas [21]. Las redes neuronales convolucionales (CNN), las redes neuronales recurrentes (RNN, recurrent neural networks en inglés) y el Naive Bayes se utilizan como clasificadores.…”
Section: Enfermedades Cardiovasculares E Inteligencia Artificialunclassified
See 1 more Smart Citation
“…Las ANN típicas están compuestas por tres tipos de capas: entrada, salida y ocultas. Cada capa está constituida por neuronas [21]. Las redes neuronales convolucionales (CNN), las redes neuronales recurrentes (RNN, recurrent neural networks en inglés) y el Naive Bayes se utilizan como clasificadores.…”
Section: Enfermedades Cardiovasculares E Inteligencia Artificialunclassified
“…Un estudio propone un clasificador de señales de ECG basado en XGBoost y un conjunto de técnicas de descomposición empírica en modos (EEMD, ensemble empirical mode decomposition en inglés) que aprovecha funciones basadas en tiempo, frecuencia y características morfológicas [38]. Otro estudio propone crear un conjunto de características morfológicas en cinco dimensiones que incluyen complejos QRS e intervalos RR, así como también coeficientes de características wavelet, para construir el vector de características para una clasificación altamente eficiente de los latidos del corazón [21]. Las medidas de desempeño son entrenadas para encontrar características que sean clasificadas correctamente; entonces, la relación de aquellas que no son bien clasificadas se utiliza para encontrar la eficiencia del clasificador.…”
Section: Enfermedades Cardiovasculares E Inteligencia Artificialunclassified
“…After data collection, the ECG signals were preprocessed [6] to remove noise, then classified into four categories of AF, normal, other rhythms, and noise [7] by a DL model consisting of a 34-layer deep residual network (ResNet) [8]. The model was initially established on the basis of the open-source 2017 PhysioNet/CinC Challenge ECG dataset [9] and was further tuned through the transfer learning technique by using ECG recordings labeled through consensus by a committee of three experts.…”
Section: Deep Learning-based Handheld Devicementioning
confidence: 99%
“…The author in [24] employed K-Nearest Neighbour classifier on MITBIH arrhythmia database to classify five types of ECG beats and attained an accuracy of 98.40% for isolating the signals. A robust extreme gradient boosting technique is utilized in [25] to classify five ECG beat classes from both MITBIH data and self-collected single-lead wearable ECG dataset. The developed model outperforms the traditional models with an accuracy of 99.14% on MITDB and 98.68% on wearable ECG dataset.…”
Section: Motivation Towards Ensemble Learningmentioning
confidence: 99%