2020
DOI: 10.48550/arxiv.2009.12686
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Robust Hypothesis Testing and Model Selection for Parametric Proportional Hazard Regression Models

Abstract: The semi-parametric Cox proportional hazards regression model has been widely used for many years in several applied sciences. However, a fully parametric proportional hazards model, if appropriately assumed, can often lead to more efficient inference. To tackle the extreme non-robustness of the traditional maximum likelihood estimator in the presence of outliers in the data under such fully parametric proportional hazard models, a robust estimation procedure has recently been proposed extending the concept of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?