2021
DOI: 10.32920/ryerson.14651541
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Robust Image Labeling Using Conditional Random Fields

Abstract: Object recognition has become a central topic in computer vision applications such as image search, robotics and vehicle safety systems. However, it is a challenging task due to the limited discriminative power of low-level visual features in describing the considerably diverse range of high-level visual semantics of objects. Semantic gap between low-level visual features and high-level concepts are a bottleneck in most systems. New content analysis models need to be developed to bridge the semantic gap. In t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 66 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?