2019
DOI: 10.48550/arxiv.1909.10285
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Robust Inference for Skewed data in Health Sciences

Abstract: Health data are often not symmetric to be adequately modeled through the usual normal distributions; most of them exhibit skewed patterns. They can indeed be modeled better through the larger family of skew-normal distributions covering both skewed and symmetric cases. However, the existing likelihood based inference, that is routinely performed in these cases, is extremely non-robust against data contamination/outliers. Since outliers are not uncommon in complex real-life experimental datasets, a robust metho… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?