Abstract:This paper studies the robust matrix completion problem for time-varying models. Leveraging the low-rank property and the temporal information of the data, we develop novel methods to recover the original data from partially observed and corrupted measurements. We show that the reconstruction performance can be improved if one further leverages the information of the sparse corruptions in addition to the temporal correlations among a sequence of matrices. The dynamic robust matrix completion problem is formula… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.