Copyright c 2014 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modication of the content of the paper are prohibited.
Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
ABSTRACTTarget tracking within conventional video imagery poses a significant challenge that is increasingly being addressed via complex algorithmic solutions. The complexity of this problem can be fundamentally attributed to the ambiguity associated with actual 3D scene position of a given tracked object in relation to its observed position in 2D image space. We propose an approach that challenges the current trend in complex tracking solutions by addressing this fundamental ambiguity head-on. In contrast to prior work in the field, we leverage the key advantages of thermal-band infrared (IR) imagery for the pedestrian localization to show that robust localization and foreground target separation, afforded via such imagery, facilities accurate 3D position estimation to within the error bounds of conventional Global Position System (GPS) positioning. This work investigates the accuracy of classical photogrammetry, within the context of current target detection and classification techniques, as a means of recovering the true 3D position of pedestrian targets within the scene. Based on photogrammetric estimation of target position, we then illustrate the efficiency of regular Kalman filter based tracking operating on actual 3D pedestrian scene trajectories. We present both a statistical and experimental analysis of the associated errors of this approach in addition to real-time 3D pedestrian tracking using monocular infrared (IR) imagery from a thermal-band camera.