We present a general framework for geometric model fitting based on a set coverage formulation, that caters for intersecting structures and outliers in a simple and principled manner. The multi-model fitting problem is formulated in terms of the optimization of a consensus-based global cost function, which allows to sidestep the pitfalls of preference approaches based on clustering and to avoid the difficult trade-off between data fidelity and complexity of other optimization formulations. Two especially appealing characteristics of this method are the ease with which it can be implemented and its modularity with respect to the solver and to the sampling strategy. Few intelligible parameters need to be set and tuned, namely the inlier threshold and the number of desired models. The summary of the experiments is that our method compares favourably with its competitors overall, and it is always either the best performer or almost on par with the best performer in specific scenarios.