2013
DOI: 10.1007/s11222-013-9442-0
|View full text |Cite
|
Sign up to set email alerts
|

Robust nonlinear principal components

Abstract: Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 20 publications
0
1
0
1
Order By: Relevance
“…Las referencia [31], por ejemplo, contiene un trabajo relacionado. PCP, sin embargo , puede fracasar en la detección de datos atípicos presentes en el complemento ortogonal del subespacio, tal como se muestra en [32] y [33]. She et al [33] investigan este problema al proponer el método ROCPCA.…”
Section: B Acp Robusto Contra Celdas Atípicasunclassified
“…Las referencia [31], por ejemplo, contiene un trabajo relacionado. PCP, sin embargo , puede fracasar en la detección de datos atípicos presentes en el complemento ortogonal del subespacio, tal como se muestra en [32] y [33]. She et al [33] investigan este problema al proponer el método ROCPCA.…”
Section: B Acp Robusto Contra Celdas Atípicasunclassified
“…However, PCP may fail to detect outliers in the orthogonal complement of the subspace (cfr. Maronna et al, 2015;She et al, 2016). Therefore, She et al (2016) introduced a robust orthogonal complement (ROCPCA) approach to deal with orthogonal complement outliers.…”
Section: Introductionmentioning
confidence: 99%