Uncertainties in loads, materials and manufacturing quality must be considered during electromagnetic devices design. This paper presents an effective methodology for robust optimization design based on the variance decomposition in order to keep higher accuracy of the robustness prediction. Sobol' theory is employed to estimate the response variance under some specific tolerance in design variables. Then, an optimal design is obtained by adding a criterion of response variance upon typical optimization problems as a constraint of the optimization. The main contribution of this paper is that the proposed method applies the variance decomposition to obtain a more accurate variance of the response, as well save the computational cost. The performance and robustness of the proposed algorithms are investigated through a numerical experiment with both an analytic function and the TEAM 22 problem.