Providing partial preference information for multiple criteria ranking or sorting problems results in the indetermination of the preference model. Investigating the influence of this indetermination on the suggested recommendation, we may obtain the necessary, possible and extreme results confirmed by, respectively, all, at least one, or the most and least advantageous preference model instances compatible with the input preference information. We propose a framework for answering questions regarding stability of these results. In particular, we are investigating the minimal improvement that warrants feasibility of some currently impossible outcome as well as the maximal deterioration by which some already attainable result still holds. Taking into account the setting of multiple criteria ranking and sorting problems, we consider such questions in view of pairwise preference relations, or attaining some rank, or assignment. The improvement or deterioration of the sort of an alternative is quantified with the change of its performances on particular criteria and/or its comprehensive score. The proposed framework is useful in terms of design, planning, formulating the guidelines, or defining the future performance targets. It is also important for robustness concern because it finds which parts of the recommendation are robust or sensitive with respect to the modification of the alternatives' performance values or scores. Application of the proposed approach is demonstrated on the problem of assessing environmental impact of main European cities.