Renewable energy sources are particularly significant in global energy production, with wind and solar being the most prevalent sources. Managing the simultaneous connection of wind and solar energy generators to the smart grid as distributed generators involves complex control and stabilization due to their inherent uncertainties, making their management more intricate than traditional power plants. This study focuses on enhancing the speed and efficiency of the maximum power point tracking (MPPT) system in a solar power plant. A hybrid network is modeled, comprising a wind turbine with a doubly-fed induction generator (DFIG), a solar power plant with photovoltaic (PV) cells, an MPPT system, a Z-source converter, and a storage system. The proposed approach employs a motion detection-based method, utilizing image-processing techniques to optimize the MPPT of PV cells based on shadow movement patterns within the solar power plant area. This method significantly reduces the time required to reach the maximum power point (MPP), lowers the computational load of the control system by predicting shadow movements, and enhances the MPPT speed while maintaining system stability. The approach, which is suitable for relatively large solar farms, is implemented without the need for any additional sensors and relies on the system’s history. The simulation results show that the proposed approach improves the MPPT system’s efficiency and reduces the pressure on the control circuits by more than 70% in a 150,000 m2 solar farm under shaded conditions.