2021
DOI: 10.1007/s40747-021-00415-9
|View full text |Cite
|
Sign up to set email alerts
|

Robust programming for basin-level water allocation with uncertain water availability and policy-driven scenario analysis

Abstract: Uncertainties from hydrological and meteorological environments constantly pose disturbances to water sustainability. Programming under such uncertainties aims at finding solutions to this risky condition. From the sight of uncertain water availability, this paper builds a water life cycle model to reduce the risks of inappropriate estimations of water availability within a river basin and incorporates the results in robust programming. Then, a policy-driven scenario analysis is conducted to provide managerial… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 46 publications
0
3
0
1
Order By: Relevance
“…Es crucial considerar los efectos del cambio climático en los sistemas hídricos para garantizar la sostenibilidad y provisión de agua potable segura y sostenible con una gestión del agua eficiente (Sperotto et al, 2019;Vaseashta et al, 2022). La incertidumbre hidrometeorológica impacta la sostenibilidad del agua, prescindiendo de análisis de escenarios para orientar políticas de conservación y evaluar la sostenibilidad en la distribución de agua, facilitando decisiones y visualización de resultados sostenibles (Claassen, 2022;Haro-Monteagudo et al, 2020;Yao et al, 2022).…”
Section: Programa De Desarrollo Sostenible Del Lago Titicacaunclassified
“…Es crucial considerar los efectos del cambio climático en los sistemas hídricos para garantizar la sostenibilidad y provisión de agua potable segura y sostenible con una gestión del agua eficiente (Sperotto et al, 2019;Vaseashta et al, 2022). La incertidumbre hidrometeorológica impacta la sostenibilidad del agua, prescindiendo de análisis de escenarios para orientar políticas de conservación y evaluar la sostenibilidad en la distribución de agua, facilitando decisiones y visualización de resultados sostenibles (Claassen, 2022;Haro-Monteagudo et al, 2020;Yao et al, 2022).…”
Section: Programa De Desarrollo Sostenible Del Lago Titicacaunclassified
“…To accurately predict the survival status of cancer patients, the authors in the third paper, "A two-stage stacked-based heterogeneous ensemble learning for cancer survival prediction" [11], developed a two-stage stacked-based heterogeneous ensemble learning for cancer survival prediction. Specifically, a priori knowledge-and stability-based feature selection (PKSFS) method was introduced to obtain the optimal feature subsets from the high-dimensional cancer datasets to guide the subsequent model construction, and then a novel two-stage heterogeneous stacked ensemble learning model (BQAXR) was devised to generate five high-quality heterogeneous learners, and integrate them in two stages through the stacked generalization strategy based on optimal feature subsets.…”
Section: Data-driven Healthcare Operations Managementmentioning
confidence: 99%
“…
Data-driven operations managementWe can roughly divide the accepted 15 papers into four groups according to their topics: data-driven supply chain management [1-4], data-driven process scheduling [5-8], data-driven healthcare operations management [9][10][11], and other data-driven operations management problems [12][13][14][15]. In the following, we formally introduce related works in detail.
…”
mentioning
confidence: 99%
“…Gong et al [17] proposed an inexact programming model for optimizing irrigation water resources based on crop water requirements in consideration of effective precipitation and uncertainty. Yao et al [18] proposed robust programming for basin-level water allocation with uncertain water availability and a policy-driven scenario analysis. Xu et al [19], using a combination of an interpretative structural model (ISM) and an analytical network process (ANP), developed a hierarchical structure model, that is, composed of direct factors, indirect factors, and basic factors.…”
Section: Introductionmentioning
confidence: 99%