A novel quantum memory scheme is proposed for quantum data buses in scalable quantum computers by using adjustable interaction. Our investigation focuses on a hybrid quantum system including coupled flux qubits and a nitrogenvacancy center ensemble. In our scheme, the transmission and storage (retrieval) of quantum state are performed in two separated steps, which can be controlled by adjusting the coupling strength between the computing unit and the quantum memory. The scheme can be used not only to reduce the time of quantum state transmission, but also to increase the robustness of the system with respect to detuning caused by magnetic noises. In comparison with the previous memory scheme, about 80% of the transmission time is saved. Moreover, it is exemplified that in our scheme the fidelity could achieve 0.99 even when there exists detuning, while the one in the previous scheme is 0.75.