Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To develop effective management to maintain or restore populations of large herbivores, wildlife managers require sound empirical data on their variations in size and associated parameters. Many studies have highlighted links between morphological traits of individuals and population density; however, less attention has been devoted to whether or not morphological traits can reliably inform on population size in years when no population estimates are available. We evaluated the relationships between three morphological traits (hind foot length, body mass, and body fat) and population size interpolated over three decades, for four migratory caribou (Rangifer tarandus) herds in northern Canada and Alaska. Our sample included 8865 measurements of 4473 individuals. We used a Bayesian modeling approach to evaluate the relationships between morphology and population size across different sex and age classes, considering different temporal scales and, when possible, phases of population growth or decline. We found that morphological traits were not consistently linked to population size. Statistically significant relationships existed for some combinations of herd and age classes, but weak to absent relationships were more common. Our study suggests that morphological traits alone cannot replace data obtained from aerial surveys to approximate population size when population trends are unknown. We discuss the usefulness of morphological traits to explain population size, and recognize their role as complementary metrics to inform the management and conservation of large herbivores, but conclude that morphological data should not be used to predict population size without information on population trends.
To develop effective management to maintain or restore populations of large herbivores, wildlife managers require sound empirical data on their variations in size and associated parameters. Many studies have highlighted links between morphological traits of individuals and population density; however, less attention has been devoted to whether or not morphological traits can reliably inform on population size in years when no population estimates are available. We evaluated the relationships between three morphological traits (hind foot length, body mass, and body fat) and population size interpolated over three decades, for four migratory caribou (Rangifer tarandus) herds in northern Canada and Alaska. Our sample included 8865 measurements of 4473 individuals. We used a Bayesian modeling approach to evaluate the relationships between morphology and population size across different sex and age classes, considering different temporal scales and, when possible, phases of population growth or decline. We found that morphological traits were not consistently linked to population size. Statistically significant relationships existed for some combinations of herd and age classes, but weak to absent relationships were more common. Our study suggests that morphological traits alone cannot replace data obtained from aerial surveys to approximate population size when population trends are unknown. We discuss the usefulness of morphological traits to explain population size, and recognize their role as complementary metrics to inform the management and conservation of large herbivores, but conclude that morphological data should not be used to predict population size without information on population trends.
Animals interact with nutrient cycles by consuming and depositing nutrients, interactions studied separately in nutritional ecology and zoogeochemistry. Recent theoretical work bridges these disciplines, highlighting that animal‐driven nutrient recycling could be crucial in helping animals meet their nutritional needs. When animals exhibit site fidelity, they consistently deposit nutrients, potentially improving vegetation quality. We investigated this potential feedback by analysing changes in forage nitrogen stocks following simulated caribou calving. We found that forage nitrogen stocks increased after 2 weeks and remained elevated after 1 year, a change due to increased forage quality, not quantity. We also developed a nutrient budget within calving grounds, demonstrating that natal fluid and calf carcasses contribute substantial nitrogen subsidies. We, thus, highlight a positive zoogeochemical feedback whereby nutrients deposited during calving become bioavailable during lactation and provide evidence that site fidelity creates a biogeochemical boomerang in which animals deposit nutrients that can be reused later.
Wildlife contend with seasonal fluctuations in resource availability and have adapted survival and reproductive strategies to overcome resource limitations. Many northern ungulates are adapted to a dynamic nutritional landscape and rely on somatic reserves accumulated during the short growing season. Moose (Alces alces) populations in the boreal forest respond to variation in their nutritional landscapes that quickly change after wildland fires. We tested associations between somatic energy reserves of female moose and a suite of factors relevant to energy demands and nutrient availability after landscape scale wildland fires on the Kenai Peninsula, Alaska. From 2015–2022, we immobilized 97 individual, adult moose (n=163 early winter; n=98 late winter) and collected over 223,000 GPS locations. We evaluated if somatic energy reserves of cow moose were influenced by endogenous or exogenous energy demands, or access to moose forage to accumulate energy reserves. Cows that gave birth and lost their neonate(s) early in the summer had more early winter body fat (14.39% ± 0.24SE) compared with cows that gave birth and the neonate survived to 4-months-old (10.59% ± 0.34SE). Body fat measured in early winter was positively correlated with home ranges of cows during summer with a higher percent cover of aspen forage. Late winter body fat of cow moose was negatively correlated with home ranges with higher percent cover of aspen forage, but positively correlated with home ranges with higher percent cover of willows and shoulder season forages. Our results highlight that a suite of plant species and seral states is needed across the landscape for moose to accumulate and moderate the loss of somatic energy reserves over the year. Furthermore, our results emphasize the importance of shoulder season forages for moose when snow depth is low. Managing the nutritional landscape of the boreal forest through interagency wildland fire management could create a mosaic of seral states that enhances moose forage, while reducing wildland fire hazards along the wildland urban interface and providing ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.