2022
DOI: 10.1214/22-ejs2038
|View full text |Cite
|
Sign up to set email alerts
|

Robust sieve M-estimation with an application to dimensionality reduction

Abstract: We propose a sieve M-estimation procedure which combines the flexibility of semiparametric inference with the stability and reliability of infinitesimal robustness. We derive the asymptotic theory of the proposed estimators, studying their convergence rate. In the context of functional magnetic resonance imaging (fMRI) data analysis, we illustrate how to apply our procedure to conduct inference on a semiparametric dynamic factor model. Monte Carlo simulations and real data analysis exemplify the stability of o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?