Summary
In this paper, a numerical method, which is about the coupling of continuous and discontinuous Galerkin method based on the splitting scheme, is presented for the calculation of viscoelastic flows of the Oldroyd‐B fluid. The momentum equation is discretized in time by using the Adams‐Bashforth second‐order algorithm, and then decoupled via the splitting approach. Considering the Oldroyd‐B constitutive equation, the second‐order Runge‐Kutta approach is selected to complete the temporal discretization. As for the spatial discretizations, the fundamental purpose is to make the best of finite element method (FEM) and discontinuous Galerkin (DG) method to handle different types of equations. Specifically speaking, for the subequations, FEM is chosen to treat the Poisson and Helmholtz equations, and DG is employed to deal with the nonlinear convective term. In addition, because of the hyperbolic nature, DG is also utilized to discretize the Oldroyd‐B constitutive equation spatially. This coupled method avoids resorting to extra stabilization technique occurred in standard FEM framework even for moderately high values of Weissenberg number and also reduces the complexity compared with unified DG scheme. The Oldroyd‐B model is applied to investigate several typical and challenging benchmarks, such as the 4:1 planar contraction flow and the lid‐driven cavity flow, with a wide range of Weissenberg number to illustrate the feasibility, robustness, and validity of our coupled method.