2021 IEEE International Conference on Image Processing (ICIP) 2021
DOI: 10.1109/icip42928.2021.9506029
|View full text |Cite
|
Sign up to set email alerts
|

Robust Unsupervised Multi-Object Tracking In Noisy Environments

Abstract: Physical processes, camera movement, and unpredictable environmental conditions like the presence of dust can induce noise and artifacts in video feeds. We observe that popular unsupervised MOT methods are dependent on noise-free inputs. We show that the addition of a small amount of artificial random noise causes a sharp degradation in model performance on benchmark metrics. We resolve this problem by introducing a robust unsupervised multi-object tracking (MOT) model: AttU-Net. The proposed single-head atten… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?