A robustness measure is an effective tool to evaluate the anti-interference capacity of the construction schedule. However, most research focuses on solution robustness or quality robustness, and few consider a composite robustness criterion, neglecting the bounded rationality of subjective weights and inherent importance and nonlinear intercriteria correlations of objective weights. Therefore, a construction schedule robustness measure based on improved prospect theory and the Copula-criteria importance through intercriteria correlation (CRITIC) method is proposed. Firstly, a composite robustness criterion is established, including start time deviation rs and structural deviation rp for measuring solution robustness from project execution and completion probability rc for measuring quality robustness from the project result. Secondly, bounded rationality is considered, using prospect theory to calculate subjective weights, which is improved by the interval distance formula. Thirdly, the Copula-CRITIC method is proposed to determine objective weights incorporating both inherent importance and nonlinear intercriteria correlations. Finally, an information-entropy-based evidence reasoning method is applied to combine subjective and objective weights together while identifying their validity. An underground power station in China is used for a case study, whose robustness is measured using the proposed methods, single robustness criterion, and composite robustness criterion using traditional weighting methods. The comparison results verify the consistency, representativeness, and advantage of the proposed criterion and methods.