Abstract:We study the problem of learning-augmented predictive linear quadratic control. Our goal is to design a controller that balances "consistency'', which measures the competitive ratio when predictions are accurate, and "robustness'', which bounds the competitive ratio when predictions are inaccurate. We propose a novel λ-confident controller and prove that it maintains a competitive ratio upper bound of 1 + min {O(λ2ε)+ O(1-λ)2,O(1)+O(λ2)} where λ∈ [0,1] is a trust parameter set based on the confidence in the pr… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.