A robust design optimization (RDO) approach for minimum weight and safe shell composite structures with minimal variability into design constraints under uncertainties is proposed. A new concept of feasibility robustness associated to the variability of design constraints is considered. So, the feasibility robustness is defined through the determinant of variance-covariance matrix of constraint functions introducing in this way the joint effects of the uncertainty propagations on structural response. A new framework considering aleatory uncertainty into RDO of composite structures is proposed. So, three classes of variables and parameters are identified: deterministic design variables, random design variables and random parameters. The bi-objective optimization search is performed using on a new approach based on two levels of dominance denoted by CoDominance-based Genetic Algorithm (CoDGA). The use of evolutionary concepts together sensitivity analysis based on adjoint variable method is a new proposal. The examples with different sources of uncertainty show that the Pareto front definition depends on random design variables and/or random parameters considered in RDO. Furthermore, the importance to control the uncertainties on the feasibility of constraints is demonstrated. CoDGA approach is a powerfully tool to help designers to make decision establishing the priorities between performance and robustness.