Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Urban street scene analysis is an important problem in computer vision with many off-line models achieving outstanding semantic segmentation results. However, it is an ongoing challenge for the research community to develop and optimize the deep neural architecture with real-time low computing requirements whilst maintaining good performance. Balancing between model complexity and performance has been a major hurdle with many models dropping too much accuracy for a slight reduction in model size and unable to handle high-resolution input images. The study aims to address this issue with a novel model, named M2FANet, that provides a much better balance between model’s efficiency and accuracy for scene segmentation than other alternatives. The proposed optimised backbone helps to increase model’s efficiency whereas, suggested Multi-level Multi-path (M2) feature aggregation approach enhances model’s performance in the real-time environment. By exploiting multi-feature scaling technique, M2FANet produces state-of-the-art results in resource-constrained situations by handling full input resolution. On the Cityscapes benchmark data set, the proposed model produces 68.5% and 68.3% class accuracy on validation and test sets respectively, whilst having only 1.3 million parameters. Compared with all real-time models of less than 5 million parameters, the proposed model is the most competitive in both performance and real-time capability.
Urban street scene analysis is an important problem in computer vision with many off-line models achieving outstanding semantic segmentation results. However, it is an ongoing challenge for the research community to develop and optimize the deep neural architecture with real-time low computing requirements whilst maintaining good performance. Balancing between model complexity and performance has been a major hurdle with many models dropping too much accuracy for a slight reduction in model size and unable to handle high-resolution input images. The study aims to address this issue with a novel model, named M2FANet, that provides a much better balance between model’s efficiency and accuracy for scene segmentation than other alternatives. The proposed optimised backbone helps to increase model’s efficiency whereas, suggested Multi-level Multi-path (M2) feature aggregation approach enhances model’s performance in the real-time environment. By exploiting multi-feature scaling technique, M2FANet produces state-of-the-art results in resource-constrained situations by handling full input resolution. On the Cityscapes benchmark data set, the proposed model produces 68.5% and 68.3% class accuracy on validation and test sets respectively, whilst having only 1.3 million parameters. Compared with all real-time models of less than 5 million parameters, the proposed model is the most competitive in both performance and real-time capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.