Day 2 Tue, November 12, 2019 2019
DOI: 10.2118/197651-ms
|View full text |Cite
|
Sign up to set email alerts
|

Rock Classification Based on Micro-CT Images using Machine Learning Techniques

Abstract: Rock classification plays significant role in determining the fluid flow movement inside the reservoir. With recent developments in computer vision of porous medium and artificial intelligence techniques, it is now possible to visualize unprecedented detail at the scale of individual grains, understand the patterns of contact angles and its direct connection to multiphase fluid movements within the porous media. The outcome of this work is a probabilistic rock classification model that provides a reliable and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 18 publications
0
1
0
1
Order By: Relevance
“…The application of deep neural networks in combination with computed tomography of geomaterials is rapidly gaining momentum. Reviewing the literature, researchers are particularly interested in applying super-resolution concepts or exploiting DCNNs for segmentation and rock classification purposes [ 21 , 22 , 23 , 24 , 25 ]. Conversely, our primary focus lies on the reduction of scan time while maintaining, if not improving, image quality.…”
Section: Introductionmentioning
confidence: 99%
“…The application of deep neural networks in combination with computed tomography of geomaterials is rapidly gaining momentum. Reviewing the literature, researchers are particularly interested in applying super-resolution concepts or exploiting DCNNs for segmentation and rock classification purposes [ 21 , 22 , 23 , 24 , 25 ]. Conversely, our primary focus lies on the reduction of scan time while maintaining, if not improving, image quality.…”
Section: Introductionmentioning
confidence: 99%
“…Eles utilizaram diferentes abordagens, supervisionadas e não supervisionadas, para segmentar as estruturas internas de diversas amostras de rocha e com isso, calcular a sua porosidade. Shaik et al [55] utilizaram 400 imagens de microtomografia 3D de duas diferentes amostras para determinar o fluxo de fluidos dentro do reservatório pela aplicação de algoritmos de inteligencia artificial. Outro exemplo pode ser encontrado no trabalho desenvolvido por Da Wang et al [20], em que, pela aplicação de técnicas de aprendizado de máquina profundo, foi possível obter uma super-resolução de imagens de rochas utilizando redes geradoras adversárias (Generative Adversarial Networks -GANs).…”
Section: Morfologia Matemáticaunclassified