Compared to gas sensors based on single metal oxide, gas sensors based on binary metal oxide semiconductors (MOS) offer a rich variety of structural types and hold great potential for excellent selectivity. Inspired by this, we synthesized BiVO4 powder through a stepwise reaction combining calcination with hydrothermal bath and investigated the influence of different calcination temperatures on its gas sensitivity performance. Our study revealed that BiVO4-600 exhibited optimal TEA gas sensing behavior at 225 oC, showing high response values (Ra/Rg=43.4) and fast response/recovery times (15 s/52 s). Additionally, the sensor displayed high stability, repeatability, and exceptional selectivity. Preliminary research indicates that calcination temperature induces changes in the oxygen vacancy content of BiVO4, thus affecting its sensing performance.