2023
DOI: 10.1017/s1446788723000186
|View full text |Cite
|
Sign up to set email alerts
|

Rodrigues Formula and Linear Independence for Values of Hypergeometric Functions With Varying Parameters

MAKOTO KAWASHIMA

Abstract: In this article, we prove a generalized Rodrigues formula for a wide class of holonomic Laurent series, which yields a new linear independence criterion concerning their values at algebraic points. This generalization yields a new construction of Padé approximations including those for Gauss hypergeometric functions. In particular, we obtain a linear independence criterion over a number field concerning values of Gauss hypergeometric functions, allowing the parameters of Gauss hypergeometric functions to vary.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?