“…Particularly, the physical motivation to look for such nonlinear waves on non-uniform/varying backgrounds starts from the situation of randomly varying surface or deep water waves to inhomogeneous plasma, layered magnetic materials, inhomogeneous optical media, and atomic condensate system [22][23][24][25]. As a result of this search, some localized nonlinear waves on varying backgrounds are investigated in recent times, which include the rogue waves on cnoidal, periodic, and solitary wave backgrounds in one-dimensional models such as focusing NLS model [26][27][28][29], derivative NLS equation [30][31][32], higher-order nonlinear Schrödinger equation [33,34], higher-order modified KdV equation [35], modified KdV models [36,37], Hirota equation [38,39], Gerdjikov-Ivanov model [40], sine-Gordon equation [41,42], Fokas model [43], and coupled cubic-quintic NLS equation [44] as well as vector Chen-Lee-Liu NLS model [45]. Mostly, the method used in these studies is nothing but the Darboux transformation which requires Lax pair and involves complex mathematical calculations.…”