We recently showed that infection by Listeria monocytogenes causes mitochondrial network fragmentation through the secreted pore-forming toxin listeriolysin O (LLO). Here, we examine factors involved in canonical fusion and fission. Strikingly, LLOinduced mitochondrial fragmentation does not require the traditional fission machinery, as Drp1 oligomers are absent from fragmented mitochondria following Listeria infection or LLO treatment, as the dynamin-like protein 1 (Drp1) receptor Mff is rapidly degraded, and as fragmentation proceeds efficiently in cells with impaired Drp1 function. LLO does not cause processing of the fusion protein optic atrophy protein 1 (Opa1), despite inducing a decrease in the mitochondrial membrane potential, suggesting a unique Drp1-and Opa1-independent fission mechanism distinct from that triggered by uncouplers or the apoptosis inducer staurosporine. We show that the ER marks LLO-induced mitochondrial fragmentation sites even in the absence of functional Drp1, demonstrating that the ER activity in regulating mitochondrial fission can be induced by exogenous agents and that the ER appears to regulate fission by a mechanism independent of the canonical mitochondrial fission machinery.mitochondrial dynamics | live cell imaging | actin M itochondria are essential organelles that perform a multitude of functions, ranging from the production of biosynthetic intermediates and energy to innate immune signaling and cellular calcium buffering or the storage of proapoptotic components (1). To perform these diverse functions, mitochondria respond to cellular cues and display a highly variable and dynamic morphology, constantly undergoing fusion and fission. It is becoming increasingly clear that mitochondrial dynamics and function are deeply interconnected, and mitochondrial dysfunction is associated with a range of diseases.Wild-type mitochondrial morphology and function are maintained by a balance between mitochondrial fusion and fission.