Photonic materials with angular independent structural color are highly desirable because they offer the broad viewing angles required for application as colorants in paints, cosmetics, textiles or displays. However, they are challenging to fabricate as they require isotropic nanoscale architectures with only short-range correlation. In this article, porous microparticles with such a structure are produced in a single, scalable step from an amphiphilic, low molecular weight bottlebrush block copolymer (290 kDa). This is achieved by exploiting a novel 'controlled micellization' self-assembly mechanism within an emulsified toluene-in-water droplet. By restricting water permeation through the droplet interface, the size of the pores can be precisely addressed, resulting in structurally colored pigments that can be tuned to reflect across the visible spectrum. Such 'photonic pigments' have several key advantages over their crystalline analogues, as they provide isotropic structural coloration that suppresses iridescence and improves color purity without the need for either refractive index matching or the inclusion of a broadband absorber.