We demonstrate that for polyethylene depolymerization with induction heating (IH), using a bifunctional (Pt-or Pt− Sn-containing zeolite) hydrocracking catalyst, we can obtain high hydrocarbon product yields (up to 95 wt % in 2 h) at a relatively low surface temperature (375 °C) and with a tunable product distribution ranging from light gas products to gasoline-to dieselrange hydrocarbons. Four zeolite types [MFI, LTL, CHA(SSZ-13), and TON] were chosen as the supports due to their varying pore sizes and structures. These depolymerization results are obtained at atmospheric pressure and without the use of H 2 and result in an alkane/alkene mixture with virtually no methane, aromatics, or coke formation. We also demonstrate how IH helps overcome diffusional resistances associated with conventional thermal heating and thereby shortens reaction times.