We report about the influence of boron (B) on surface morphology of Si layers grown by molecular beam epitaxy on Si(111) mesas. Dimension of step-free mesa areas is reduced in comparison to pristine Si and scales with the B-coverage. This can be explained by a reduced mass transport on the Si surface in the presence of B-induced √3 × √3 surface structure which is due to a reduced Si equilibrium free adatom density. We demonstrate that a suitable combination of initial B coverage and Si layer thickness results in large step free areas and B doping concentration up to 4 × 1018 cm−3.