Adenosine stress CMR perfusion imaging can quantify absolute perfusion and myocardial perfusion reserve (MPR) in coronary artery disease (CAD) with higher spatial resolution than positron emission tomography, the only clinically available technique for quantitative myocardial perfusion imaging. While porcine models of CAD are excellent for studying perfusion abnormalities in chronic CAD, to date there are a limited number of studies that use quantitative perfusion for evaluation. Therefore, we developed an adenosine stress CMR protocol to evaluate the temporal evolution of perfusion defects in a porcine model of progressive obstructive CAD. 10 Yucatan minipigs underwent placement of an ameroid occluder around the left circumflex artery (LCX) to induce a progressive chronic coronary obstruction. Four animals underwent a hemodynamic dose range experiment to determine the adenosine dose inducing maximal hyperemia. Each animal had a CMR examination, including stress/rest spiral quantitative perfusion imaging at baseline and 1, 3, and 6 weeks. Late gadolinium enhancement images determined the presence of myocardial infarction, if any existed. Pixelwise quantitative perfusion maps were generated using Fermi deconvolution. The results were statistically analyzed with a repeated mixed measures model to block for physiological variation between the animals. Five animals developed myocardial infarction by 3 weeks, while three developed ischemia without an infarction. The perfusion defects were located in the inferolateral myocardium in the perfusion territory of the LCX. Stress perfusion values were higher in remote segments than both the infarcted and ischemic segments (p < 0.01). MPR values were significantly greater in the remote segments than infarcted and ischemic segments (p < 0.01). While the MPR decreased in all segments, the MPR recovered by the sixth week in the remote regions. We developed a model of progressive CAD and evaluated the temporal evolution of the development of quantitative perfusion defects. This model will serve as a platform for understanding the development of perfusion abnormalities in chronic occlusive CAD.