Patients in critical condition who require mechanical ventilation experience intricate interactions between their respiratory and cardiovascular systems. These complex interactions are crucial for clinicians to understand as they can significantly influence therapeutic decisions and patient outcomes. A deep understanding of heart–lung interactions is essential, particularly under the stress of mechanical ventilation, where the right ventricle plays a pivotal role and often becomes a primary concern. Positive pressure ventilation, commonly used in mechanical ventilation, impacts right and left ventricular pre- and afterload as well as ventricular interplay. The right ventricle is especially susceptible to these changes, and its function can be critically affected, leading to complications such as right heart failure. Clinicians must be adept at recognizing and managing these interactions to optimize patient care. This perspective will analyze this matter comprehensively, covering the pathophysiology of these interactions, the monitoring of heart–lung dynamics using the latest methods (including ECHO), and management and treatment strategies for related conditions. In particular, the analysis will delve into the efficacy and limitations of various treatment modalities, including pharmaceutical interventions, nuanced ventilator management strategies, and advanced devices such as extracorporeal membrane oxygenation (ECMO). Each approach will be examined for its impact on optimizing right ventricular function, mitigating complications, and ultimately improving patient outcomes in the context of mechanical ventilation.