or most of its history, the superconductivity of strontium ruthenate (Sr 2 RuO 4) (ref. 1) has been understood in terms of an odd-parity two-component order parameter with equal-spin pairing in the RuO 2 planes: p x ± ip y (refs. 2-5). This order parameter is chiral: the Cooper pairs have angular momentum l = ±1. The evidence for chirality comes from the zero-field muon spin relaxation (ZF-μSR) data 6 , observation of a non-zero Kerr rotation below the critical temperature T c (ref. 7) and signs in the junction experiments of domains in the superconducting state 8,9 , while evidence for equal-spin pairing came from the absence of a change in the Knight shift below T c in nuclear magnetic resonance 10 and polarized neutron scattering 11 measurements. The Knight shift is related to the spin susceptibility; in conventional opposite-spin-pairing superconductors, it is suppressed below T c. However, in new measurements, it has been found that the Knight shift is, in fact, suppressed below T c (refs. 12-14), by a magnitude that is unlikely to be reconcilable with equal-spin pairing. This revision has called into question a number of other results on Sr 2 RuO 4. It raises a particular challenge for experiments that indicate chirality, because opposite-spin pairing implies an even-parity momentum-space gap structure. If the order parameter is constrained to be even parity, chiral, and composed of components that are degenerate on the tetragonal lattice of Sr 2 RuO 4 , the only possibility is d xz ± id yz order 15. Under conventional understanding, this is a highly unlikely order parameter because it