Remnant forests in urban areas provide vital ecosystem services but are susceptible to many human activities including heavy metal emissions. In this study, we collected 192 samples of mineral soils at depths of 0-3, 3-13 and 13-23 cm in 16 remnant forests (eight natural forests and eight plantation forests) in the urbanized Pearl River Delta, China. We assessed the potential risks of soil Cu, Zn, Pb, Mn, Ni and Cr to the vegetation in these forests based on their total and 0.1 M HCl extractable concentrations. The mean concentrations for all soil samples were 202.7, 102.0, 75.7, 24.3, 30.3, and 7.8 mg/kg for Zn, Mn, Pb, Cu, Cr, and Ni, respectively. Compared to background values, total soil Zn concentrations were higher for both the natural and plantation forests located near both industrial and non-industrial sites; total soil Cu and Pb concentrations were higher near industrial sites, particularly for the natural forests. Total soil Pb, Cu, and Mn concentrations and exchangeable soil Pb and Mn concentrations were higher in the natural forests than in the plantation forests. Total soil Cu and Pb concentrations and extractable soil Cu, Pb, Zn,
OPEN ACCESSForests 2014, 5 886 and Mn concentrations decreased with soil depth. Based on these results and previous findings of continued acidification and low phosphorus availability of these soils, we recommend that the growth of these remnant forests can be improved by the application of phosphate rock.